A straight line passes through the point P(1,2) and Q
A straight line passes through the point P(1,2) and Q
(5,8). Calculate the length PQ
\(4\sqrt{11}\)
\(4\sqrt{10}\)
\(2\sqrt{17}\)
\(2\sqrt{13}\)
Correct answer is D
|PQ| = \(\sqrt{(x_2 - X- 1) + (y_2 - y_1)^2}\)
= \(\sqrt{(5 - 1)^2 + (8 - 2)^2}\)
= \(\sqrt{4^2 + 6^2}\)
= \(\sqrt{16 + 36}\)
= \(\sqrt{52}\)
= 2\(\sqrt{13}\)
Simplify 4\(\sqrt{27}\) + 5\(\sqrt{12}\) − 3\(\sqrt{75}\)...
Make s the subject of the relation: P = S + \(\frac{sm^2}{nr}\)...
The diagram shows a circle O. If < ZYW = 33\(^o\) , find < ZWX ...
Factorize r2 - r(2p + q) + 2pq ...
Evaluate \(\frac{(05652)^2 - (04375)^2}{0.04}\) correct to three significant figures ...
Given that logx 64 = 3, evaluate x log\(_2\)8...
If x + y = 2y - x + 1 = 5, find the value of x...
Simplify \(\frac{x^2 - y^2}{2x^2 + xy - y^2}\)...
In the diagram, PQRS is a parallelogram. Find the value of < SQR ...