q = \(\frac{rt^2}{(p - r^3)}\)
q = \(\frac{t^2}{(p - r^2)}\)
q = \(\frac{rt}{(p - r^3)}\)
q = \(\frac{(p - r^3)}{rt^2}\)
q = rt\(^2\)(p - r\(^3\))
Correct answer is A
t = √pq/r - r\(^2\)q
multiply both sides by the L.C.M, r
r\(^2\) = pq - qr\(^3\)
collect like terms on the RHS
q(p - r3) = rt\(^2\)
q = \(\frac{rt^2}{(p - r^3)}\)