Make q the subject of the relation t = √(pq/r  - r\(^2\)q)

A.

q = \(\frac{rt^2}{(p - r^3)}\)

B.

q = \(\frac{t^2}{(p - r^2)}\)

C.

q = \(\frac{rt}{(p - r^3)}\)

D.

q = \(\frac{(p - r^3)}{rt^2}\)

E.

q = rt\(^2\)(p - r\(^3\))

Correct answer is A

t = √pq/r - r\(^2\)q

multiply both sides by the L.C.M, r


r\(^2\) = pq - qr\(^3\)

collect like terms on the RHS
q(p - r3) = rt\(^2\)


q = \(\frac{rt^2}{(p - r^3)}\)