\(\frac{111}{13}\)
\(\frac{321}{65}\)
-\(\frac{216}{65}\)
\(\frac{112}{13}\)
\(\frac{131}{65}\)
Correct answer is C
Given cos x = - \(\frac{5}{13}\)
→ adj = -5, hyp = 13
Pythagoras' rule → hyp\(^2\) = Opp\(^2\) + adj\(^2\)
Opp\(^2\) = 13\(^2\) - [-5]\(^2\) → 169 - 25
Opp = √144 → 12
tan x = \(\frac{opp}{adj}\) → - \(\frac{12}{5}\)
sin x = \(\frac{opp}{hyp}\) → \(\frac{12}{13}\)
; tan x - sin x → - \(\frac{12}{5}\) - \(\frac{12}{13}\)
= - \(\frac{216}{65}\)
Simplify the expression: \(Log_{4}16\) + \(Log_{3}27\) + \(Log_{8}4096\) ...
In the diagram above, PQT is an isosceles triangle.|PQ| = |QT|, ∠SRQ = 75°, ∠QPT = 25&de...
What is the place value of 9 in the number 3.0492? ...
If P = {3, 7, 11, 13} and Q = {2, 4, 8, 16}, which of the following is correct ...
Make r subject of the formula given that \(\frac{x}{r+a}=\frac{a}{r}\) ...
Evaluate \(\int^{\frac{\pi}{2}} _{\frac{-\pi}{2}} cos x dx\) ...