Evaluate log5(\( y^2x^5 ÷ 125b½) \)

A.

2 log5y + 5log5 y2 − 3

B.

log5 y2 + 5log5 x + 3

C.

25logy 5 + 3

D.

2log5y + 5log5x − ½ log5b −3

Correct answer is D

\(\log_{5}(y^{2} x^{5} \div 125b^{\frac{1}{2}})\)

= \(\log_{5} y^{2} + \log_{5} x^{5} - [\log_{5} 125 + \log_{5} b^{\frac{1}{2}}\)

= \(2\log_{5} y + 5\log_{5} x - \log_{5} 5^{3} - \frac{1}{2} \log_{5} b\)

= \(2\log_{5} y + 5\log_{5} x - 3 - \frac{1}{2}\log_{5} b\)