16
20
8
-2
Correct answer is B
The line: \(3y + 6x\) = 48
Divide through by 3
⇒ y + 2\(x\) = 16
⇒ y = -2\(x\) + 16
∴ The gradient of the line = -2
The points: A(-2, k) and B (4, 8)
m =\(\frac{y2 - y1}{x2 - x1} = \frac{8 - k}{4 - (-2)}\)
⇒ m =\(\frac[8 - k}{4 + 2} = {8 - k}{6}\)
Since the line passes through the points
∴ -2 = \(\frac{8 - k}{6}\)
⇒ \(\frac{-2}[1} = \frac{8 - k]{6}\)
⇒ 8 - k = -12
⇒ k = 8 + 12
∴ k = 20
Solve the equation 7y\(^2\) = 3y ...
If \(\frac{x}{a + 1}\) + \(\frac{y}{b}\) = 1. Make y the subject of the relation....
Find the values of x for which \(\frac {x+2}{4}\) - \(\frac{2x - 3}{3}\) < 4...
In the figure above, find the value of y ...
If y = x sin x, Find \(\frac{d^2 y}{d^2 x}\)...
If the ratio x:y = 3:5 and y:z = 4:7, find the ratio x:y:z ...