16
20
8
-2
Correct answer is B
The line: \(3y + 6x\) = 48
Divide through by 3
⇒ y + 2\(x\) = 16
⇒ y = -2\(x\) + 16
∴ The gradient of the line = -2
The points: A(-2, k) and B (4, 8)
m =\(\frac{y2 - y1}{x2 - x1} = \frac{8 - k}{4 - (-2)}\)
⇒ m =\(\frac[8 - k}{4 + 2} = {8 - k}{6}\)
Since the line passes through the points
∴ -2 = \(\frac{8 - k}{6}\)
⇒ \(\frac{-2}[1} = \frac{8 - k]{6}\)
⇒ 8 - k = -12
⇒ k = 8 + 12
∴ k = 20
In the diagram, triangle MNR is inscribed in circle MNR, and line PQ is a straight line. ∠M...
In the diagram, PQRS is a circle center O. PQR is a diameter and ∠PRQ = 40°. Calculate ∠QSR...
In the diagram, PQ is the diameter of the circle and ∠PRS = 58°. Find ∠STQ. ...
If 8\(\frac{x}{2}\) = (2\(\frac{3}{8}\))(4\(\frac{3}{4}\)), find x...
Evaluate 1.25 × 10\(^2\) × 0.125 × 10\(^3\) × 12.5 × 10\(^{-4}\)&...
If \(K\sqrt{28}+\sqrt{63}-\sqrt{7}=0\), find K. ...
If (-3, -4) is a point on the line y = mx + 2 find the value of m....