Make u the subject of formula, E = \(\frac{m}{2g}\)(v2 - u2)

A.

u = \(\sqrt{v^2 - \frac{2Eg}{m}}\)

B.

u = \(\sqrt{\frac{v^2}{m} - \frac{2Eg}{4}}\)

C.

u = \(\sqrt{v- \frac{2Eg}{m}}\)

D.

u = \(\sqrt{\frac{2v^2Eg}{m}}\)

Correct answer is A

E = \(\frac{m}{2g}\)(v2 - u2)

multiply both sides by 2g

2Eg = 2g (\(\frac{M}{2g} (V^2 - U^2)\)

2Eg = m(V2 - U2)

2Eg - mV2 - mU2

mU2 = mV2 - 2Eg

divide both sides by m

\(\frac{mU^2}{m} = \frac{mV^2 - 2Eg}{m}\)

U2 = \(\frac{mV^2 - 2Eg}{m}\)

= \(\frac{mV^2}{m} - \frac{2Eg}{m}\)

U2 = V2 - \(\frac{2Eg}{m}\)

U = \(\sqrt{V^2 - \frac{2Eg}{m}}\)