u = \(\sqrt{v^2 - \frac{2Eg}{m}}\)
u = \(\sqrt{\frac{v^2}{m} - \frac{2Eg}{4}}\)
u = \(\sqrt{v- \frac{2Eg}{m}}\)
u = \(\sqrt{\frac{2v^2Eg}{m}}\)
Correct answer is A
E = \(\frac{m}{2g}\)(v2 - u2)
multiply both sides by 2g
2Eg = 2g (\(\frac{M}{2g} (V^2 - U^2)\)
2Eg = m(V2 - U2)
2Eg - mV2 - mU2
mU2 = mV2 - 2Eg
divide both sides by m
\(\frac{mU^2}{m} = \frac{mV^2 - 2Eg}{m}\)
U2 = \(\frac{mV^2 - 2Eg}{m}\)
= \(\frac{mV^2}{m} - \frac{2Eg}{m}\)
U2 = V2 - \(\frac{2Eg}{m}\)
U = \(\sqrt{V^2 - \frac{2Eg}{m}}\)