(x + 2)2
x(x + 2)
xv + 2
x2 - x
Correct answer is D
(x = 2)(x2 - 3x + 2) + 2(x + 2)(x - 1) = (x + 2)m
(m + 2)[(x2 - 3x + 2) + 2(x - 1)] = (x + 2)M
divide both side by (x + 2)
(x2 - 3x + 2) + 2(x - 1) = M
x2 - 3x + 2 + 2x - 2 = M
x2 - 3x + 2 + 2x - 2 = M
x2 - 3x + 2x = M
x2 - x = M
M = x2 - x