If \(\sqrt{3^{\frac{1}{x}}}\) = \(\sqrt{9}\) then the value of x is:

A.

\(\frac{3}{4}\)

B.

\(\frac{4}{3}\)

C.

\(\frac{1}{3}\)

D.

\(\frac{2}{3}\)

E.

\(\frac{1}{2}\)

Correct answer is E

\(\sqrt{3^{\frac{1}{x}}}\) = \(\sqrt{9}\)

3\(^{\frac{1}{2x}}\) = \(9^{\frac{1}{2}}\)

3\(^{\frac{1}{2x}}\) = 3\(^{2 \times \frac{1}{2}}\)

3\(\frac{1}{2x}\) = 3\(\frac{2}{2}\) = 3

\(3^{\frac{1}{2x}}\) = \(3^{1}\)

\(\frac{1}{2x}\) = \(\frac{1}{1}\)

x = \(\frac{1}{2}\)