Rationalize the denominator of the expression \(\frac{6 + 2\sqrt{5}}{4 - 3\sqrt{6}}\)

A.

\(\frac{12+ 4\sqrt{5 + 7} 5 + 6\sqrt{3}}{39}\)

B.

\(\frac{-(24 + 18\sqrt{6} + 8\sqrt{5} + 6\sqrt{30})}{38}\)

C.

\(\frac{24 + 3\sqrt{6 + 8} 5 + 6\sqrt{30}}{19}\)

D.

\(\frac{-15 + 3\sqrt{5 + 18} 5 + 6\sqrt{30}}{36}\)

E.

\(\frac{-(12 + 4\sqrt{5} +9\sqrt{6} + 3\sqrt{30})}{19}\)

Correct answer is B

Rationalize using the reciprocal of the denominator to multiply through 

(i.e. Multiply both numerator and denominator using \(4 + 3\sqrt{6}\) )

Watch your signs in the course of this.