27
9
\(\frac{1}{27}\)
18
81
Correct answer is A
\((\log_{3} x)^{2} - 6(\log_{3} x) + 9 = 0\)
Let \(\log_{3} x = a\).
\(a^{2} - 6a + 9 = 0\)
\(a^{2} - 3a - 3a + 9 = 0\)
\(a(a - 3) - 3(a - 3) = 0\)
\((a - 3)(a - 3) = 0\)
\(\implies a = 3 (twice)\)
\(\log_{3} x = 3 \implies x = 3^{3} = 27\)