\(\frac{5}{2}\)
1
\(\frac{26}{7}\)
\(\frac{1}{3}\)
Correct answer is C
\(\frac{3e + f}{3f - e}\) = \(\frac{2}{5}\)
= 3e + f
= 2 x 1
\(\frac{-e + 3f}{3e - f}\) = \(\frac{5 \times 3}{2}\)
= \(\frac{3e + 9f = 15}{10f = 17}\)
f = \(\frac{17}{10}\)
Sub. for equ. (1)
3e + \(\frac{17}{10}\) = 2
3e = 2 - \(\frac{17}{10}\)
\(\frac{3}{10}\)
e = \(\frac{3}{10}\) x \(\frac{1}{3}\)
= \(\frac{1}{10}\)
= e + 3f = \(\frac{1}{10}\) + \(\frac{3 \times}{10}\) = \(\frac{52}{10}\)
f - 3e = \(\frac{17}{10}\) - 3 x \(\frac{1}{10}\)
= \(\frac{14}{10}\)
= \(\frac{52}{10}\) x \(\frac{10}{14}\)
= \(\frac{26}{7}\)
The solution of x + 2 \(\geq\) 2x + 1 is illustrated...
Given m = N\(\sqrt{\frac{SL}{T}}\) make T the subject of the formula...
The bar chart above shows the scores of some students in a test. Use it to answer this ...
Express \(\frac{1}{x^{3}-1}\) in partial fractions ...
Simplify \(7\frac{1}{12}-4\frac{3}{4}+2\frac{1}{2}\) ...
If angle \(\theta\) is 135°, evaluate cos\(\theta\) ...
If R = [2, 4, 6, 7] and S = [1, 2, 4, 8], then R∪S equal ...