Rationalize the expression \(\frac{1}{\sqrt{2} + \sqrt{5}}\)

A.

\(\frac{1}{3}\)(\(\sqrt{5} - \sqrt{2}\)

B.

\(\frac{\sqrt{2}}{3}\) + \(\frac{\sqrt{5}}{5}\)

C.

\(\sqrt{2} - \sqrt{5}\)

D.

5(\(\sqrt{2} - \sqrt{5}\)

E.

\(\frac{1}{3}\)(\(\sqrt{2} - \sqrt{5}\)

Correct answer is A

\(\frac{1}{\sqrt{2} + \sqrt{5}}\)

\(\frac{1}{\sqrt{2} + \sqrt{5}} \times \frac{(\sqrt{2} - \sqrt{5})}{(\sqrt{2} - \sqrt{5})}\)

= \(\frac{\sqrt{2} - \sqrt{5}}{2 - 5}\)

= \(\frac{\sqrt{2} - \sqrt{5}}{-3}\)

= \(\frac{1}{3} (\sqrt{5} - \sqrt{2})\)