r > \(\frac{abc}{bc + ac + ab}\)
r < abc
r > \(\frac{1}{a}\) + \(\frac{1}{b}\) + \(\frac{1}{c}\)
\(\frac{1}{abc}\)
Correct answer is A
\(\frac{r}{a}\) + \(\frac{r}{b}\) + \(\frac{r}{c}\) > 1 = \(\frac{bcr + acr + abr}{abc}\) > 1
r(bc + ac + ba > abc) = r > \(\frac{abc}{bc + ac + ab}\)
In the diagram, PQR is a straight line, (m + n) = 120o and (n + r) = 100o. Find (m + r)...
Simplify \(\frac{3^n - 3^{n - 1}}{3^3 \times 3^n - 27 \times 3^{n - 1}}\)...
\(\begin{array}{c|c} \text{Age in years} & 13 & 14 & 15 & 16 & 17 \\ \hline \tex...
Find the 4th term of an A.P, whose first term is 2 and the common difference is 0.5...
Find a positive value of \(\alpha\) if the coordinate of the centre of a circle x\(^2\) + y\(^2...