Find the range of values of values of r which satisfies the following inequality, where a, b and c are positive \(\frac{r}{a}\) + \(\frac{r}{b}\) + \(\frac{r}{c}\) > 1

A.

r > \(\frac{abc}{bc + ac + ab}\)

B.

r < abc

C.

r > \(\frac{1}{a}\) + \(\frac{1}{b}\) + \(\frac{1}{c}\)

D.

\(\frac{1}{abc}\)

Correct answer is A

\(\frac{r}{a}\) + \(\frac{r}{b}\) + \(\frac{r}{c}\) > 1 = \(\frac{bcr + acr + abr}{abc}\) > 1

r(bc + ac + ba > abc) = r > \(\frac{abc}{bc + ac + ab}\)