\(\frac{169}{25}\)
\(\frac{25}{169}\)
\(\frac{169}{144}\)
\(\frac{144}{169}\)
Correct answer is A
Cos \(\theta\) = \(\frac{12}{13}\)
x2 + 122 = 132
x2 = 169- 144 = 25
x = 25
= 5
Hence, tan\(\theta\) = \(\frac{5}{12}\) and cos\(\theta\) = \(\frac{12}{13}\)
If cos2\(\theta\) = 1 + \(\frac{1}{tan^2\theta}\)
= 1 + \(\frac{1}{\frac{(5)^2}{12}}\)
= 1 + \(\frac{1}{\frac{25}{144}}\)
= 1 + \(\frac{144}{25}\)
= \(\frac{25 + 144}{25}\)
= \(\frac{169}{25}\)
Evaluate ∫\(^2_1\) \(\frac{5}{x}\) dx...
The figure FGHK is a rhombus. What is the value of angle X? ...
An arc of circle of radius 2cm subtends an angle of 60º at the centre. Find the area of th...
The maximum value of the function f(x) = 2 + x - x2 is ...
If \(\frac{2 \sqrt{3} - \sqrt{2}}{\sqrt{3} + 2 \sqrt{2}}\) = m + n √ 6, find the values of m an...
The solution to the simultaneous equations 3x + 5y = 4, 4x + 3y = 5 is...
In what modulus is it true that 9 + 8 = 5?...
Simplify \(\frac{3(2^{n+1}) - 4(2^{n-1})}{2^{n+1} - 2^n}\) ...