\(\frac{1}{a}\) (-u + \(\sqrt{U^2 - 2as}\))
\(\frac{1}{a}\) {u \(\pm\) (U2 - 2as)}
\(\frac{1}{a}\) {u \(\pm\) \(\sqrt{2as}\)}
\(\frac{1}{a}\) {-u + \(\sqrt{( 2as)}\)}
Correct answer is A
Given S = ut + \(\frac{1}{2} at^2\)
S = ut + \(\frac{1}{2} at^2\)
∴ 2S = 2ut + at2
= at2 + 2ut - 2s = 0
t = \(\frac{-2u \pm 4u^2 + 2as}{2a}\)
= -2u \(\pi\) \(\frac{\sqrt{u^2 4u^2 + 2as}}{2a}\)
= \(\frac{1}{a}\) (-u + \(\sqrt{U^2 - 2as}\))