3
4
5
8
Correct answer is A
log5(62.5) - log5(\(\frac{1}{2}\))
= log5\(\frac{(62.5)}{\frac{1}{2}}\) - log5(2 x 62.5)
= log5(125)
= log553 - 3log55
= 3
A bearing of 320\(^o\) expressed as a compass bearing is...
Simplify; \(\frac{3^{n - 1} \times 27^{n + 1}}{81^{n}}\)...
Evaluate \(\int\)(cos4x + sin3x)dx...
simplify \(\frac{1}{√3 - 2}\) - \(\frac{1}{√3 + 2}\)...
If log7.5 = 0.8751, evaluate 2 log75 + log750 ...
If x : y : z = 3 : 3 : 4, evaluate \(\frac{9x + 3y}{6z - 2y}\)...