\(\frac{3}{2}\)
\(\frac{9}{4}\)
\(\frac{5}{2}\)
3
Correct answer is B
\(\begin{array}{c|c} x & f & fx & \bar{x} - x & (\bar{x} - x)^2 & f(\bar{x} - x)^2 \\ \hline 1 & 2 & 2 & -2 & 4 & 8\\ 2 & 1 & 2 & -1 & 1 & 1\\ 3 & 2 & 6 & 0 & 0 & 0\\ 4 & 1 & 4 & 1 & 1 & 1\\ 2 & 2 & 10 & 2 & 4 & 8\\ \hline & 8 & 24 & & & 18 \end{array}\)
x = \(\frac{\sum fx}{\sum f}\)
= \(\frac{24}{8}\)
= 3
Variance (62) = \(\frac{\sum f(\bar{x} - x)^2}{\sum f}\)
= \(\frac{18}{8}\)
= \(\frac{9}{4}\)