Make F the subject of the formula t = \(\sqrt{\frac{v}{\frac{1}{f} + \frac{1}{g}}}\)

A.

\(\frac{gv-t^2}{gt^2}\)

B.

\(\frac{gt^2}{gv-t^2}\)

C.

\(\frac{v}{\frac{1}{t^2} - \frac{1}{g}}\)

D.

\(\frac{gv}{t^2 - g}\)

Correct answer is B

t = \(\sqrt{\frac{v}{\frac{1}{f} + \frac{1}{g}}}\)

t2 = \(\frac{v}{\frac{1}{f} + \frac{1}{g}}\)

= \(\frac{vfg}{ftg}\)

\(\frac{1}{f} + \frac{1}{g}\) = \(\frac{v}{t^2}\)

= (g + f)t2 = vfg

gt2 = vfg - ft2

gt2 = f(vg - t2)

f = \(\frac{gt^2}{gv-t^2}\)