For what range of values of x is \(\frac{1}{2}\)x + \(\frac{1}{4}\) > \(\frac{1}{3}\)x + \(\frac{1}{2}\)?

A.

x < \(\frac{3}{2}\)

B.

x > \(\frac{3}{2}\)

C.

x < -\(\frac{3}{2}\)

D.

x > -\(\frac{3}{2}\)

Correct answer is B

\(\frac{1}{2}\)x + \(\frac{1}{4}\) > \(\frac{1}{3}\)x + \(\frac{1}{2}\)

Multiply through by through by the LCM of 2, 3 and 4

12 x \(\frac{1}{2}\)x + 12 x \(\frac{1}{4}\) > 12 x \(\frac{1}{3}\)x + 12 x \(\frac{1}{2}\)

6x + 3 > 4x + 6

6x - 4x > 6 - 3

2x > 3

\(\frac{2x}{2}\) > \(\frac{3}{2}\)

x > \(\frac{3}{2}\)