Make S the subject of the formula: \(V = \frac{K}{\sqrt{T-S}}\)

A.

\(T-\frac{K^2}{V^2} = S\)

B.

\(T+\frac{K^2}{V^2} = S\)

C.

\(T-\frac{K^2}{V} = S\)

D.

\(T-\frac{K}{V} = S\)

E.

\(T-\frac{K}{V^2} = S\)

Correct answer is A

\(V = \frac{K}{\sqrt{T-S}}\)
square both sides of the equation
\(V^2 = \frac{K^2}{T-S}\)
cross multiply
\(V^2 T - S = K^2\)
\(T - S = \frac{K^2}{V^2}\)
\(T = \frac{K^2}{V^2} + S\)
\(T - = \frac{K^2}{V^2} = S\)