\(T-\frac{K^2}{V^2} = S\)
\(T+\frac{K^2}{V^2} = S\)
\(T-\frac{K^2}{V} = S\)
\(T-\frac{K}{V} = S\)
\(T-\frac{K}{V^2} = S\)
Correct answer is A
\(V = \frac{K}{\sqrt{T-S}}\)
square both sides of the equation
\(V^2 = \frac{K^2}{T-S}\)
cross multiply
\(V^2 T - S = K^2\)
\(T - S = \frac{K^2}{V^2}\)
\(T = \frac{K^2}{V^2} + S\)
\(T - = \frac{K^2}{V^2} = S\)
Marks 2 3 4 5 6 7 8 No. of students 3 1 5 2 4 2 3 from the table above, if the pass mark is...
Express (0.0425 / 2.5) as a fraction ...
The mean of two numbers x and y is 4. Find the mean of four numbers x, 2x, y and 2y ...
An arc subtends an angle of 30<sup>o</sup> at the centre of a circle radius 12cm. Calcul...