Mathematics questions and answers

Mathematics Questions and Answers

How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.

226.

Height(cm) 160 161 162 163 164

165

No. of players 4 6 3 7 8 9

the table shows the height of 37 players of a basketball team calculates correct to one decimal place the mean height of the players.

A.

163.0

B.

162.0

C.

160.0

D.

165.0

Correct answer is A

∑fx = (160 * 4) + (161 * 6) + (162 * 3) + (163 * 7) + (164 * 8) + (165 * 9)  

=640 + 966 + 486 + 1,141 + 1,312 + 1,485

= 6,030

∑f = 4 + 6 + 3 + 7 + 8 + 9

= 37

= \(\frac{∑fx}{∑f}\)

= \(\frac{6030}{37}\)

= 162.97 or 163

227.

In the diagram, line \(\overline{EC}\) is a diameter of the circle ABCDE.

If angle ABC equals 158°, find ∠ADE

A.

112

B.

90

C.

68

D.

22

Correct answer is C

No explanation has been provided for this answer.

228.

Given that sin x = 3/5, 0 ≤ x ≤ 90, evaluate (tanx + 2cosx)

A.

2\(\frac{11}{20}\)

B.

\(\frac{11}{20}\)

C.

2\(\frac{7}{20}\)

D.

\(\frac{1}{20}\)

Correct answer is B

Sin x = \(\frac{opp}{hyp}\)

sinx = \(\frac{3}{5}\)

using Pythagoras' theorem

 hyp\(^2\) = opp\(^2\) + adj\(^2\)

adj\(^2\) = 5\(^2\) - 3\(^2\) = 25 - 9

adj\(^2\) = 16 

adj =  16 

adj = 4.

tanx = \(\frac{opp}{adj}\)

= \(\frac{3}{4}\)

cosx = \(\frac{adj}{hyp}\)

= \(\frac{4}{5}\)

(tanx + 2cosx) = \(\frac{3}{4}\) + 2(\(\frac{4}{5}\))

= \(\frac{15 + 32}{20}\)

= \(\frac{47}{20}\) or 

2 \(\frac{7}{20}\)

229.

A cone has a base radius of 8cm and height 11cm. calculate , correct to 2d.p, the curved surface area

A.

341.98cm\(^2\)

B.

276.57cm\(^2\)

C.

201.14cm\(^2\)

D.

477.71cm\(^2\)

Correct answer is A

Where l\(^2\) = h\(^2\) + r\(^2\)

l\(^2\) = 11\(^2\) + 8\(^2\)

l = √185

l = 13.60cm

The formula of CSA of Cone is πrl

\(\frac{22}{7}\) * 8 * 13.60

= 341.979 or 341.98 (2d.p)

230.

In the diagram, PQRS is a circle. find the value of x.

A.

50°

B.

30°

C.

80°

D.

100°

Correct answer is A

Opp. angles in a cyclic quadrilateral always add up to 180°

∠P + ∠R & ∠Q + ∠S = 180

x + x+y = 180 

2x + y = 180... i

2y - 30 + x = 180 

2y + x = 180 + 30

x + 2y = 210 ... ii

Elimination method:

(2x + y = 180) * 1 --> 2x + y = 180

(x + 2y = 210) * 2 --> 2x + 4y = 420

Subtracting both equations

- 3y = - 240

y = 80°

using eqn i

2x + y = 180

2x + 80 = 180

2x = 100

x = 50°