How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
Evaluate \(\frac{6.3 \times 10^5}{8.1 \times 10^3}\) to 3 significant fiqures
77.80
778.0
7.870
8.770
88.70
Correct answer is A
\(\frac{6.3 \times 10^5}{8.1 \times 10^3}\)
\(\frac{7}{9} \times 10^{2}\)
= \(0.77778 \times 10^{2}\)
= \(77.778 \approxeq 77.80\)
10011
111011
111000
11001
110011
Correct answer is D
\(\begin{array}{c|c} 2 & 25\\2 & 12 R 1\\2 & 6 R 0\\2 & 3 R 0\\2 & 1 R 1\end{array}\)
= (11001)
Simplify \(\frac{6^{2n + 1} \times 9^n \times 4^{2n}}{18^n \times 2^n \times 12^{2n}}\)
32n
3 x 23n - 1
2n
6
1
Correct answer is D
\(\frac{6^{2n + 1} \times 9^n \times 4^{2n}}{18^n \times 2^n \times 12^{2n}}\) = \(\frac{(2 \times 3^{2n + 1} \times 3^{2n}) \times 2^{4n}}{(2 \times 9)^n \times 2^n \times (6 \times 2^{2n})}\)
= \(\frac{(2^{2n + 1} \times 3^{2n + 1}) \times 3^{2n} \times 2^{4n}}{2^n \times 3^{2n} \times 2^n \times 2^{4n} \times 3^{2n}}\)
= \(\frac{2^{2n} + 1 + 4^n \times 3^{2n} + 1 + 2^n}{2^{n + n + 4n} \times 3^{2n + 4n} \times 3^{2n + 2n}}\)
= \(\frac{2^{6n + 1} \times 3^{4n + 1}}{2^{6n} x 3^{4n}}\)
= 26n + 1 - 6n x 34n + 1 - 4n
2 x 3 = 6
51\(\frac{3}{7}\)km per hour
72km per hour
37\(\frac{1}{2}\) km per hour
66km per hour
75km per hour
Correct answer is B
Distance travelled by both x and y = 150 km.
Speed of y = 60km per hour, Time = \(\frac{dist.}{Speed}\)
Time spent by y = \(\frac{150}{60}\)
= 2\(\frac{3}{6}\)hrs
= \(\frac{1}{2}\) hrs
if x arrived at p 25 minutes earlier than y, then time spent by x = 2 hour 5 mins
= 125 mins
x average speed = \(\frac{150}{125}\) x \(\frac{60}{1}\)
= \(\frac{9000}{125}\)
= 72 km\hr
Given that 10x = 0.2 and log102 = 0.3010, find x
-1.3010
-0.6990
0.6990
1.3010
0.02
Correct answer is B
Given that log102 = 0.3010, If 10x = 0.2
log1010x = log10 0.2 = log10
xlog10 10 = log10 2 - log1010 since log10 10 = 1
x = 0.3010 - 1
x = -0.6990