Mathematics questions and answers

Mathematics Questions and Answers

How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.

1,886.

The difference between 4\(\frac{5}{7}\) and 2\(\frac{1}{4}\) greater by

A.

\(\frac{23}{28}\)

B.

\(\frac{24}{28}\)

C.

\(\frac{50}{56}\)

D.

\(\frac{27}{28}\)

E.

\(\frac{48}{56}\)

Correct answer is C

Difference between 4\(\frac{5}{7}\) and 2\(\frac{1}{4}\)

\(\frac{33}{7}\) - \(\frac{9}{4}\) = \(\frac{69}{24}\)

The sum of \(\frac{1}{14}\) and 1\(\frac{1}{14}\) + \(\frac{3}{2}\)

= \(\frac{11}{7}\)

\(\frac{69}{28}\) - \(\frac{11}{7}\) = \(\frac{25}{28}\)

= \(\frac{50}{56}\)

1,887.

A baking recipe calls for 2.5kg of sugar and 4.5kg of flour. With this recipe some cakes were baked using 24.5kg of a mixture of sugar and flour. How much sugar was used?

A.

12.25kg

B.

6.75kg

C.

8.75kg

D.

15.75kg

E.

8.25kg

Correct answer is C

Sugar : flour = 2.5 : 4.5

Total = 7

sugar used = \(\frac{2.5}{7}\) x 24.5

= \(\frac{61.25}{7}\)

= 8.75

1,888.

Multiply x2 + x + 1 by x2 - x + 1

A.

x4 - x + x2

B.

x4 - x2 + x2

C.

x4 + x2 + 1

D.

x4 + x2

Correct answer is C

(x2 + x + 1)( x2 - x + 1)

= x2(x2 + x + 1) - x(x2 + x + 1) + (x3 + x + 1)

= x4 - x3 + x2 + x3 - x2 - x + 1

= x4 + x2 + 1

1,889.

If b = a + cp and r = ab + \(\frac{1}{2}\)cp2, express b2 in terms of a, c, r.

A.

b2 = aV + 2cr

B.

b2 = ar + 2c2r

C.

b2 = a2 = \(\frac{1}{2}\) cr2

D.

b2 = \(\frac{1}{2}\)ar2 + c

E.

b2 = 2cr - a2

Correct answer is E

b = a + cp....(i)

r = ab + \(\frac{1}{2}\)cp2.....(ii)

expressing b2 in terms of a, c, r, we shall first eliminate p which should not appear in our answer from eqn, (i)

b - a = cp = \(\frac{b - a}{c}\)

sub. for p in eqn.(ii)

r = ab + \(\frac{1}{2}\)c\(\frac{(b - a)^2}{\frac{ab + b^2 - 2ab + a^2}{2c}}\)

2cr = 2ab + b2 - 2ab + a2

b2 = 2cr - a2

1,890.

Simplify T = \(\frac{4R_2}{R_1^{-1} + R_2^{-1} + 4R_3^{-1}}\)

A.

\(\frac{4R_1 \times R_2 R_3}{R_2R_3 + R_1R_3 + 4R_1 R_2}\)

B.

\(\frac{R_1 R_2 R_3}{R_2R_3 + R_1R_2 + 4R_1 R_2}\)

C.

\(\frac{16R_1 R_2 R_3}{R_2R_3 + R_1R_2 + R_1 R_2}\)

D.

\(\frac{4R_1 R_2 R_3}{4R_2R_3 + R_1R_2 + 4R_1 R_2}\)

Correct answer is A

T = \(\frac{4R_2}{R_1^{-1} + R_2^{-1} + 4R_3^{-1}}\) = \(\frac{4R_2}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{4}{R_3}}\)

= \(\frac{4R_2}{\frac{R_2R_3 + R_1R_3 + 4R_1R_2}{R_1R_2R_3}}\)

= \(\frac{4R_2 \times R_1 R_2 R_3}{R_2R_3 + R_1R_3 + 4R_1 R_2}\)

= \(\frac{4R_1 \times R_2 R_3}{R_2R_3 + R_1R_3 + 4R_1R_2}\)

T = \(\frac{4R_1 \times R_2 R_3}{R_2R_3 + R_1R_3 + 4R_1 R_2}\)