How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
If x + 0.4y = 3 and y = \(\frac{1}{2}\)x, find the value of (x + y)
1\(\frac{1}{4}\)
2\(\frac{1}{2}\)
3\(\frac{3}{4}\)
5
Correct answer is C
x + 0.4y = 3...(i)
y = \(\frac{1}{2}\)x
x = 2y
x - 2y = 0....(ii)
solve simultaneously; x + 0.4y
= 3 - x - 2y = 0
2.4 = 3
y = \(\frac{3 \times 10}{2.4 \times 10} \)
= \(\frac{30}{24} = \frac{5}{4}\)
x - 2(\(\frac{5}{4}\)) = 0
x - \(\frac{5}{2}\) = 0
x = \(\frac{5}{2}\)
x + y = \(\frac{5}{2} + \frac{5}{4}\)
\(\frac{10 + 5}{4} = \frac{15}{4}\)
= 3\(\frac{3}{4}\)
Which of these statements about y = 8\(\sqrt{m}\) is correct?
log y = log 8 x log \(\sqrt{m}\)
log y = 3 log 2 x \(\frac{1}{2}\) log m
log y = 3 log 2 - \(\frac{1}{2}\) log m
log y = 3 log 2 + \(\frac{1}{2}\) log m
Correct answer is D
y = 8\(\sqrt{m}\); log y = log 8\(\sqrt{m}\)
log y = log 8 + log \(\sqrt{m}\)
log y = log 23 + log m\(\frac{1}{2}\)
log y = 3 log 3 + \(\frac{1}{2}\) log m
\(\frac{8}{15}\)
\(\frac{13}{25}\)
\(\frac{11}{15}\)
\(\frac{13}{15}\)
Correct answer is A
Prob(RB + BR) = Total balls = 4 + 6 = 10
= prob(\(\frac{4}{10} \times \frac{6}{9}\)) + prob(\(\frac{6}{10} \times \frac{4}{9}) = \frac{24}{90} + \frac{24}{90}\)
= \(\frac{48}{90} = \frac{16}{30} = \frac{8}{15}\)
\(\sqrt{10}\)
4
5
\(\sqrt{30}\)
Correct answer is C
\(\begin{array}{c|c} x & x - x & (x - \bar{x})^2\\ \hline 15 & -6 & 36\\21 & 0 & 0\\17 & -4 & 16\\ 26 & 5 & 25 \\ 18 & -3 &9 \\ 29 & 8 & 64 \end{array}\)
\(E(x - \bar{x})^2\) = 150
N = 6
S.D = \(\sqrt{\frac{(x - x)^2}{N}}\)
S.D = \(\sqrt{\frac{150}{6}}\) = 5
50 tan 30o
50 sin 54o
50 tan 54o
50 sin 36o
Correct answer is B
No explanation has been provided for this answer.