How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
A binary operation Δ is defined by a Δ b = a + 3b + 2.
Find (3 Δ 2) Δ 5
35
59
28
87
Correct answer is C
a Δ b = a + 3b + 2 (3 Δ 2) Δ 5 = (3 + 3(2) + 2) Δ 5 = 11 Δ 5 = 11 + 3(5) + 2 = 28
N21,850
N18,780
N27,400
N32,500
Correct answer is C
Education = \(\frac{15}{100} \times N 50,000\)
= N 7,500
Food = N 13,600
Electricity = \(\frac{3}{100} \times N 50,000\)
= N 1,500
Leftover : N (50,000 - (7,500 + 13,600 + 1,500))
= N 27,400
Find the equation of the locus of a point A(x, y) which is equidistant from B(0, 2) and C(2, 1)
4x + 2y = 3
4x - 3y = 1
4x - 2y = 1
4x + 2y = -1
Correct answer is C
Since A(x, y) is the point of equidistance between B and C, then
AB = AC
(AB)\(^2\) = (AC)\(^2\)
Using the distance formula,
(x - 0)\(^2\) + (y - 2)\(^2\) = (x - 2)\(^2\) + (y - 1)\(^2\)
x\(^2\) + y\(^2\) - 4y + 4 = x\(^2\) - 4x + 4 + y\(^2\) - 2y + 1
x\(^2\) - x\(^2\) + y\(^2\) - y\(^2\) + 4x - 4y + 2y = 5 - 4
4x - 2y = 1
N20,000
N28,000
N31,200
N41,000
Correct answer is A
Let the number of days worked by the assistant = t
∴∴ The bricklayer worked (t + 10) days.
1500(t + 10) + 500(t) = N 95,000
1500t + 15,000 + 500t = N 95,000
2000t = N 95,000 - N 15,000
2000t = N 80,000
t = 40 days
∴∴ The assistant worked for 40 days and received N (500 x 40)
= N 20,000
If \(25^{1 - x} \times 5^{x + 2} \div (\frac{1}{125})^{x} = 625^{-1}\), find the value of x.
x = -4
x = 2
x = -2
x = 4
Correct answer is A
\(25^{1 - x} \times 5^{x + 2} \div (\frac{1}{125})^{x} = 625^{-1}\)
\((5^2)^{(1 - x)} \times 5^{(x + 2)} \div (5^{-3})^x = (5^4)^{-1}\)
\(5^{2 - 2x} \times 5^{x + 2} \div 5^{-3x} = 5^{-4}\)
\(5^{(2 - 2x) + (x + 2) - (-3x)} = 5^{-4}\)
Equating bases, we have
\(2 - 2x + x + 2 + 3x = -4\)
\(4 + 2x = -4 \implies 2x = -4 - 4\)
\(2x = -8\)
\(x = -4\)