How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
49
170
21
210
Correct answer is D
The first poster has 7 ways to be arranges, the second poster can be arranged in 6 ways and the third poster in 5 ways.
= 7 x 6 x 5
= 210 ways
or \(\frac{7}{P_3}\) = \(\frac{7!}{(7 - 3)!}\) = \(\frac{7!}{4!}\)
= \(\frac{7 \times 6 \times 5 \times 4!}{4!}\)
= 210 ways
Simplify (\(\sqrt2 + \frac{1}{\sqrt3})(\sqrt2 - \frac{1}{\sqrt3}\))
\(\frac{7}{3}\)
\(\frac{5}{3}\)
\(\frac{5}{2}\)
\(\frac{3}{2}\)
Correct answer is B
(\(\sqrt2 + \frac{1}{\sqrt3})(\sqrt2 - \frac{1}{\sqrt3}\))
\(\sqrt4 - \frac {\sqrt2}{\sqrt3} + \frac {\sqrt2}{\sqrt3} - \frac {1}{\sqrt9}\)
= 2 - \(\frac {1}{3}\)
= \(\frac {16 - 1}{3}\)
= \(\frac{5}{3}\)
Rationalize \(\frac{2 - \sqrt5}{3 - \sqrt5}\)
\(\frac{1 - \sqrt5}{2}\)
\(\frac{1 - \sqrt5}{4}\)
\(\frac{ \sqrt5 - 1}{2}\)
\(\frac{1 + \sqrt5}{4}\)
Correct answer is B
\(\frac{2 - \sqrt5}{3 - \sqrt5}\) x \(\frac{3 + \sqrt5}{3 + \sqrt5}\)
\(\frac{(2 - \sqrt5)(3 + \sqrt5)}{(3 - \sqrt5)(3 + \sqrt5)}\) = \(\frac{6 +2\sqrt5 - 3\sqrt5 - \sqrt25}{9 + 3\sqrt5 - 3\sqrt5 - \sqrt25}\)
= \(\frac{6 - \sqrt5 - 5}{9 - 5}\)
= \(\frac{1 - \sqrt5}{4}\)
If log318 + log33 - log3x = 3, Find x.
1
2
0
3
Correct answer is B
log\(_{3}^{18}\) + log\(_{3}^{3}\) - log\(_{3}^{x}\) = 3
log\(_{3}^{18}\) + log\(_{3}^{3}\) - log\(_{3}^{x}\) = 3log33
log\(_{3}^{18}\) + log\(_{3}^{3}\) - log\(_{3}^{x}\) = log333
log3(\(\frac{18 \times 3}{X}\)) = log333
\(\frac{18 \times 3}{X}\) = 33
18 x 3 = 27 x X
x = \(\frac{18 \times 3}{27}\)
= 2
Simplify \((\frac{16}{81})^{\frac{1}{4}} \div (\frac{9}{16})^{-\frac{1}{2}}\)
\(\frac{2}{3}\)
\(\frac{1}{2}\)
\(\frac{8}{9}\)
\(\frac{1}{3}\)
Correct answer is B
\((\frac{16}{81})^{\frac{1}{4}} \div (\frac{9}{16})^{-\frac{1}{2}}\)
\((\frac{16}{81})^{\frac{1}{4}} \div (\frac{16}{9})^{\frac{1}{2}}\)
\((\frac{2^4}{3^4})^{\frac{1}{4}} \div (\frac{4^2}{3^2})^{\frac{1}{2}}\)
\(\frac{2^{4 \times \frac{1}{4}}}{3^{4 \times \frac{1}{4}}} \div \frac{4^{2 \times \frac{1}{2}}}{3^{2 \times \frac{1}{2}}}\)
\(\frac{2}{3} \div \frac{4}{3}\)
\(\frac{2}{3} \times \frac{3}{4}\)
\(\frac{2}{4}\)
\(\frac{1}{2}\)