How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
Evaluate \(\frac{0.36 \times 5.4 \times 0.63}{4.2 \times 9.0 \times 2.4}\)
0.013
0.014
0.14
0.13
Correct answer is B
\(\frac{0.36 \times 5.4 \times 0.63}{4.2 \times 9.0 \times 2.4}\)
= \(\frac{36}{420} \times \frac{54}{90} \times \frac{63}{240}\)
= \(\frac{6}{70} \times \frac{18}{30} \times \frac{21}{80}\)
= \(\frac{27}{2000}\)
= 0.0135
\(\approx\) = 0.014
Evaluate \(\frac{1}{3} \div [\frac{5}{7}(\frac{9}{10} -1 + \frac{3}{4})]\)
\(\frac{28}{39}\)
\(\frac{13}{39}\)
\(\frac{39}{28}\)
\(\frac{84}{13}\)
Correct answer is A
\(\frac{1}{3} \div [\frac{5}{7}(\frac{9}{10} -1 + \frac{3}{4})]\)
\(\frac{1}{3} \div [\frac{5}{7}(\frac{9}{10} - \frac{10}{10} + \frac{3}{4})]\)
= \(\frac{1}{3} \div [\frac{5}{7}(\frac{-1}{10} + \frac{3}{4})]\)
= \(\frac{1}{3} \div [\frac{5}{7}(\frac{-2 + 15}{20})]\)
= \(\frac{1}{3} \div [\frac{5}{7} \times \frac{13}{20}]\)
\(\frac{1}{3} + [\frac{13}{28}]\) = \(\frac{1}{3} \times \frac{28}{13}\)
= \(\frac{28}{39}\)
29
26
25
24
Correct answer is A
Let the sum of the 12 numbers be x and the 13th number be y.
\(\frac{x}{12} = 3 \implies x = 36\)
\(\frac{36 + y}{13} = 5 \implies 36 + y = 65\)
\(y = 65 - 36 = 29\)
Solve for x if \(25^{x} + 3(5^{x}) = 4\)
1 or -4
0
1
-4 or 0
Correct answer is B
\(25^{x} + 3(5^{x}) = 4\)
Let \(5^{x}\) = y.
\((5^{2})^{x} + 3(5^{x}) - 4 = 0\)
\(y^{2} + 3y - 4 = 0\)
\(y^{2} - y + 4y - 4 = 0\)
\(y(y - 1) + 4(y - 1) = 0\)
\((y + 4)(y - 1) = 0\)
\(y = -4 ; y = 1\)
y = -4 is not possible.
y = 1 \(\implies\) x = 0.
\(\frac{5}{3}\)
\(\frac{1}{9}\)
\(\frac{4}{9}\)
\(\frac{1}{36}\)
Correct answer is C
\(\begin{array}{c|c} & W & W & W & W & B & B \\ \hline W & WW & WW & WW & WW & WB & WB \\ W & WW & WW & WW & WW & WB & WB\\W & WW & WW & WW & WW & WB & WB\\ W & WW & WW & WW & WW & WB & WB\\ B & BW & BW & BW & BW & BB & BB \\ B & BW & BW & BW & BW & BB & BB\end{array}\)
P(WW) = \(\frac{16}{36}\)
= \(\frac{4}{9}\)