How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
Find the gradient of the line passing through the points (-2, 0) and (0, -4)
2
-4
-2
4
Correct answer is C
Given (-2, 0) and (0, -4)
Gradient = \(\frac{-4 - 0}{0 - (-2)}\)
= \(\frac{-4}{2}\)
= -2
Evaluate x2(x2 - 1)-\(\frac{1}{2}\) - (x2 - 1)\(\frac{1}{2}\)
(x2 - 1)-\(\frac{1}{2}\)
(x2 - 1)1
(x2 - 1)
(x2 - 1)-1
Correct answer is A
x2(x2 - 1)-\(\frac{1}{2}\) - (x2 - 1)\(\frac{1}{2}\) = \(\frac{x^2}{(x^2 - 1)^\frac{1}{2}}\) - \(\frac{(x^2 - 1)^\frac{1}{2}}{1}\)
= \(\frac{x^2 - (x^2 - 1)}{(x^2 - 1) ^\frac{1}{2}}\)
= \(\frac{x^2 - x^2 + 1}{(x^2 - 1)^\frac{1}{2}}\)
= (x2 - 1)-\(\frac{1}{2}\)
Simplify \(\frac{\sqrt{1 + x} + \sqrt{x}}{\sqrt{1 + x} - \sqrt{x}}\)
-2x - 2\(\sqrt{x (1 + x)}\)
1 + 2x + 2\(\sqrt{x (1 + x)}\)
\(\sqrt{x (1 + x)}\)
1 + 2x - 2\(\sqrt{x (1 + x)}\)
Correct answer is B
\(\frac{\sqrt{1 + x} + \sqrt{x}}{\sqrt{1 + x} - \sqrt{x}}\)
= \((\frac{\sqrt{1 + x} + \sqrt{x}}{\sqrt{1 + x} - \sqrt{x}}) (\frac{\sqrt{1 + x} + \sqrt{x}}{\sqrt{1 + x} + \sqrt{x}})\)
= \(\frac{(1 + x) + \sqrt{x(1 + x)} + \sqrt{x(1 + x)} + x}{(1 + x) - x}\)
= \(\frac{1 + 2x + 2\sqrt{x(1 + x)}}{1}\)
= \(1 + 2x + 2\sqrt{x(1 + x)}\)
Solve the equation (x - 2) (x - 3) = 12
2, 3
3, 6
-1, 6
1, -6
Correct answer is C
(x - 2) (x - 3) = 12
x2 - 3x - 2x + 6 = 12
x2 - 5x - 6 = 0
(x +1)(x - 6) = 0
x = -1 or 6
What is the nth term of the progression 27, 9, 3,......?
27\(\frac{1}{3}\) n - 1
3n + 2
27 + 18(n - 1)
27 + 6(n - 1)
Correct answer is A
Given 27, 9, 3,......this is a G.P
r = \(\frac{9}{27}\)
= \(\frac{1}{3}\)
T = arn - 1
= 27\(\frac{1}{3}\) n - 1