Mathematics questions and answers

Mathematics Questions and Answers

How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.

2,096.

Factorize (4a + 3)2 - (3a - 2)2

A.

(a + 1)(a + 5)

B.

(a - 5)(7a - 1)

C.

(a + 5)(7a + 1)

D.

a(7a + 1)

Correct answer is C

(4a + 3)2 - (3a - 2)2 = a2 - b2

= (a + b)(a - b)

= [(4a + 3) + (3a - 2)][(4a + 3) + (3a - 2)]

= [(4a + 3 + 3a - 2)][(4a + 3 - 3a + 2)]

= (7a + 1)(a + 5)

∴ (a + 5)(7a + 1)

2,097.

Simplify \(\frac{1}{5x + 5}\) + \(\frac{1}{7x+ 7}\)

A.

\(\frac{12}{35x + 1}\)

B.

\(\frac{1}{35(x + 1)}\)

C.

\(\frac{12x}{35(x + 7)}\)

D.

\(\frac{12}{35x + 35}\)

Correct answer is D

\(\frac{1}{5x + 5}\) + \(\frac{1}{7x+ 7}\) = \(\frac{1}{5(x + 1)}\) + \(\frac{1}{7(x + 1)}\)

= \(\frac{7 + 5}{35(x + 1)}\)

= \(\frac{12}{35(x + 1)}\)

2,098.

Solve the equation 3x2 + 6x - 2 = 0

A.

x = -1 \(\pm\) \(\frac{\sqrt{3}}{3}\)

B.

x = -1 \(\pm\) \(\frac{\sqrt{15}}{3}\)

C.

x = -2 \(\pm\) 2

D.

x = 3 \(\pm\) \(\frac{\sqrt{3}}{15}\)

Correct answer is B

3x2 + 6x - 2 = 0

Using almighty formula i.e. x = \(\frac{b \pm \sqrt{b^2 - 4ac}}{2a}\)

a = 3, b = 6, c = -2

x = \(\frac{-6 \pm \sqrt{6^2 - 4(3)(-2)}}{2(3)}\)

x = \(\frac{-6 \pm \sqrt{36 + 24}}{6}\)

x = \(\frac{-6 \pm \sqrt{60}}{6}\)

x = \(\frac{-6 \pm \sqrt{4 \times 15}}{6}\)

x = \(-1 \pm \frac{\sqrt{15}}{3}\)

2,099.

Factorize \(x^2 + 2a + ax + 2x\)

A.

(x + 2a)(x + 1)

B.

(x + 2a)(x - 1)

C.

(x2 - 1)(x - a)

D.

(x + 2)(x + a)

Correct answer is D

\(x^{2} + 2a + ax + 2x\)

\(x^{2} + 2a + ax + 2x\)

\(x(x + 2) + a(x + 2)\)

\((x + 2)(x + a)\)

2,100.

Find all real numbers x which satisfy the inequality \(\frac{1}{3}\)(x + 1) - 1 > \(\frac{1}{5}\)(x + 4)

A.

x < 11

B.

x < -1

C.

x > 6

D.

x > 11

Correct answer is D

\(\frac{1}{3}\)(x + 1) - 1 > \(\frac{1}{5}\)(x + 4)

= \(\frac{x + 1}{3}\) - 1 > \(\frac{x + 4}{5}\)

\(\frac{x + 1}{3}\) - \(\frac{x + 4}{5}\) - 1 > 0

= \(\frac{5x + 5 - 3x - 12}{15}\)

= 2x - 7 > 15

= 2x > 22

= x > 11