Mathematics questions and answers

Mathematics Questions and Answers

How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.

1,356.

What is the length of a rectangular garden whose perimeter is 32cm and area 39cm2?

A.

25cm

B.

18cm

C.

13cm

D.

9cm

Correct answer is C

perimeter = 2(l + b) = 32

l + b = \(\frac{32}{2}\)

l + b = 16

b = 16 - 1.......(1)

Area = l + b = 39

lb = 39 .....(2)

put (1) into (2)

l(16 - 1) = 39

16l - l2 = 39

l2 = 13l - 3l + 39 = 0

l(l - 13) - 3(1 - 13) = 0

(l - 3)(l + 130 = 0

l - 3 = 0 or l - 13 = 0

l = 3cm or l = 13cm; The length in 13cm

1,357.

Given that tan x = 1, where 0o \(\geq\) x 90o, evaluate \(\frac{1 - \sin^2 x}{\cos x}\)

A.

2\(\sqrt{2}\)

B.

\(\sqrt{2}\)

C.

\(\frac{\sqrt{2}}{2}\)

D.

\(\frac{1}{2}\)

Correct answer is C

Given tan x = 1

x = tan-1(1)

x = 45o

Now, \(\frac{1 - ( \frac{1}{\sqrt{2} )^2}}{\frac{1}{\sqrt{2}}}\)

= \(\frac{1 - \frac{1}{2}}{\frac{1}{2}}\)

= \(\frac{1}{2} + \frac{1}{\sqrt{2}}\)

= \(\frac{1}{2} \times \frac{1}{\sqrt{2}}\)

= \(\frac{\sqrt{2}}{2}\)

1,358.

A rectangle has length xcm and width (x - 1)cm. If the perimeter is 16cm. Find the value of x

A.

3\(\frac{1}{2}\)cm

B.

4cm

C.

4\(\frac{1}{2}\)cm

D.

5cm

Correct answer is C

l = x; b = x - 1

perimeter = 2(l + b) = 16

l + b = \(\frac{16}{2}\) = 8

l + b = 8

x + x - 1 = 8

2x = 8 + 1

2x = 9

x = \(\frac{9}{2}\)cm

x = 4\(\frac{1}{2}\)

1,359.

If sin 3y = cos 2y and 0o \(\leq\) 90o, find the value of y

A.

18o

B.

36o

C.

54o

D.

90o

Correct answer is A

sin 3y = cos 2y, but sin \(\theta\) = cos(90 - \(\theta\))

sin 3y = cos(90 - 3y)

cos(90 - 3y) = cos 2y

90 - 3y = 2y

5y = 90

y = \(\frac{90}{5}\)

y = 18o

1,360.

Simplify 2\(\sqrt{3}\) - \(\frac{6}{\sqrt{3}} + \frac{3}{\sqrt{27}}\)

A.

1

B.

\(\frac{1}{3}\sqrt{3}\)

C.

2\(\sqrt{3} - 5\frac{2}{3}\)

D.

6\(\sqrt{3}\) - 17

Correct answer is B

2\(\sqrt{3}\) - \(\frac{6}{\sqrt{3}} + \frac{3}{\sqrt{27}}\)

= 2\(\sqrt{3} - \frac{6}{\sqrt{3}} + \frac{3}{\sqrt{9 \times 3}}\)

= 2\(\sqrt{3} - \frac{6}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} + \frac{3}{3\sqrt{3}}\)

= 2\(\sqrt{3} = 6 \frac{\sqrt{3}}{3} + \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}\)

= 2\(\sqrt{3} - 2\sqrt{3} + \frac{\sqrt{3}}{3}\)

= \(\frac{\sqrt{3}}{3} = \frac{1}{3} \sqrt{3}\)