How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
What is the length of a rectangular garden whose perimeter is 32cm and area 39cm2?
25cm
18cm
13cm
9cm
Correct answer is C
perimeter = 2(l + b) = 32
l + b = \(\frac{32}{2}\)
l + b = 16
b = 16 - 1.......(1)
Area = l + b = 39
lb = 39 .....(2)
put (1) into (2)
l(16 - 1) = 39
16l - l2 = 39
l2 = 13l - 3l + 39 = 0
l(l - 13) - 3(1 - 13) = 0
(l - 3)(l + 130 = 0
l - 3 = 0 or l - 13 = 0
l = 3cm or l = 13cm; The length in 13cm
Given that tan x = 1, where 0o \(\geq\) x 90o, evaluate \(\frac{1 - \sin^2 x}{\cos x}\)
2\(\sqrt{2}\)
\(\sqrt{2}\)
\(\frac{\sqrt{2}}{2}\)
\(\frac{1}{2}\)
Correct answer is C
Given tan x = 1
x = tan-1(1)
x = 45o
Now, \(\frac{1 - ( \frac{1}{\sqrt{2} )^2}}{\frac{1}{\sqrt{2}}}\)
= \(\frac{1 - \frac{1}{2}}{\frac{1}{2}}\)
= \(\frac{1}{2} + \frac{1}{\sqrt{2}}\)
= \(\frac{1}{2} \times \frac{1}{\sqrt{2}}\)
= \(\frac{\sqrt{2}}{2}\)
A rectangle has length xcm and width (x - 1)cm. If the perimeter is 16cm. Find the value of x
3\(\frac{1}{2}\)cm
4cm
4\(\frac{1}{2}\)cm
5cm
Correct answer is C
l = x; b = x - 1
perimeter = 2(l + b) = 16
l + b = \(\frac{16}{2}\) = 8
l + b = 8
x + x - 1 = 8
2x = 8 + 1
2x = 9
x = \(\frac{9}{2}\)cm
x = 4\(\frac{1}{2}\)
If sin 3y = cos 2y and 0o \(\leq\) 90o, find the value of y
18o
36o
54o
90o
Correct answer is A
sin 3y = cos 2y, but sin \(\theta\) = cos(90 - \(\theta\))
sin 3y = cos(90 - 3y)
cos(90 - 3y) = cos 2y
90 - 3y = 2y
5y = 90
y = \(\frac{90}{5}\)
y = 18o
Simplify 2\(\sqrt{3}\) - \(\frac{6}{\sqrt{3}} + \frac{3}{\sqrt{27}}\)
1
\(\frac{1}{3}\sqrt{3}\)
2\(\sqrt{3} - 5\frac{2}{3}\)
6\(\sqrt{3}\) - 17
Correct answer is B
2\(\sqrt{3}\) - \(\frac{6}{\sqrt{3}} + \frac{3}{\sqrt{27}}\)
= 2\(\sqrt{3} - \frac{6}{\sqrt{3}} + \frac{3}{\sqrt{9 \times 3}}\)
= 2\(\sqrt{3} - \frac{6}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} + \frac{3}{3\sqrt{3}}\)
= 2\(\sqrt{3} = 6 \frac{\sqrt{3}}{3} + \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}\)
= 2\(\sqrt{3} - 2\sqrt{3} + \frac{\sqrt{3}}{3}\)
= \(\frac{\sqrt{3}}{3} = \frac{1}{3} \sqrt{3}\)