How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
11
13
12
14
Correct answer is B
An exterior angle of a n-sided regular polygon = \(\frac{360}{n}\)
For (n - 1) sided regular polygon = \(\frac{360}{n - 1}\)
For (n + 2) sided regular polygon = \(\frac{360}{n + 1}\)
⇒ \(\frac{360}{n - 1} - \frac{360}{n + 2}\) = 6 9Given)
⇒ \(\frac{360(n + 2) - 360(n - 1)}{(n - 1)(n + 2)}\)
⇒ \(\frac{360n + 720 - 360n + 360}{(n - 1)(n + 2)}\)
⇒ \(\frac{1080}{(n - 1)(n + 2)} = \frac{6}{1}\)
⇒ 1080 = 6 (n - 1)(n + 2)
⇒ 180 = (n - 1)(n + 2)
⇒ 180 = n\(^2\)+ 2n - n - 2
⇒ 180 = n\(^2\) + n - 2
⇒ n\(^2\)b+ n - 2 - 180 = 0
⇒ n\(^2\) + n - 182 = 0
⇒ n\(^2\) + 14n - 13n - 182 = 0
⇒ n (n + 14) - 13 (n + 14) = 0
⇒ (n - 13) (n + 14) = 0
⇒ n - 13 = 0 or n + 14 = 0
⇒ n = 13 or n = -14
∴ n = 13 (We can't have a negative number of side)
2.17%
1.73%
2.23%
1.96%
Correct answer is A
% error = \(\frac{Error}{Actual Value}\) x 100%
Student's Value = 18mL
Actual Value = 18.4mL
Error = 18.4 - 18 = 0.4
∴ % error = \(\frac{0.4}{18.4}\) x 100% = 2.17%
1.2
6.4
4.6
1.8
Correct answer is A
Average performance rating of Team B = \(\frac{7+9+1+9+6}{5} = \frac{32}{5}\) = 6.4
Average performance rating of Team A = \(\frac{5+3+6+10+2}{5} = \frac{26}{5}\) = 5.2
∴ The difference in the average performance ratings between Team B and Team A = 6.4 - 5.2 = 1.2
Express 16.54 x 10\(^{-5}\) - 6.76 x 10\(^{-8}\) + 0.23 x 10\(^{-6}\) in standard form
1.66 x 10\(^{-4}\)
1.66 x 10\(^{-5}\)
1.65 x 10\(^{-5}\)
1.65 x 10\(^{-4}\)
Correct answer is A
16.54 x 10\(^{-5}\) - 6.76 x 10\(^{-8}\) + 0.23 x 10\(^{-6}\)
⇒ 1.654 x 10\(^{-4}\) - 6.76 x 10\(^{-8}\) + 2.3 x 10\(^{-7}\)
⇒ 1.654 x 10\(^{-4}\) - 0.000676 x 10\(^{-4}\) + 0.0023 x 10\(^{-4}\)
⇒ (1.654 - 0.000676 + 0.0023) x 10\(^{-4}\)
∴ 1.655624 x 10\(^{-4}\) ≃ 1.66 x 10\(^{-4}\)
The third term of an A.P is 6 and the fifth term is 12. Find the sum of its first twelve terms
201
144
198
72
Correct answer is C
T\(_3\) = 6
T\(_5\) = 12
S\(_{12}\) = ?
T\(_n\) = a + (n - 1)d
⇒ T\(_3\) = a + 2d = 6 ----- (i)
⇒ T\(_5\) = a + 4d = 12 ----- (ii)
Subtract equation (ii) from (i)
⇒ -2d = -6
⇒ d\(\frac{-6}{-2}\) = 3
Substitute 3 for d in equation (i)
⇒ a + 2(3) = 6
⇒ a + 6 = 6
⇒ a = 6 - 6 = 0
S\(_n\) = \(\frac{n(2a + (n - 1)d)}{2}\)
⇒ S\(_{12}\) = \(\frac{12(2 \times 0 + (12 - 1)3)}{2}\)
⇒ S\(_{12}\) = 6(0 + 11 x 3)
⇒ S\(_{12}\) = 6(33)
∴ S\(_{12}\) = 198