Mathematics questions and answers

Mathematics Questions and Answers

How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.

711.

Evaluate 1 − (\(\frac{1}{5}\) x 1\(\frac{2}{3}\)) + (5 + 1\(\frac{2}{3}\))

A.

4

B.

3

C.

\(\frac{22}{3}\)

D.

3\(\frac{2}{3}\)

Correct answer is C

1 − (\(\frac{1}{5}\) x 1\(\frac{2}{3}\)) + (5 + 1\(\frac{2}{3}\))

1 − (\(\frac{1}{5}\) x \(\frac{5}{3}\)) + (5 + \(\frac{5}{3}\))

1 − \(\frac{1}{3}\) + \(\frac{20}{3}\)

= \(\frac{22}{3}\)

712.

Find the range of the following set of numbers 0.4, −0.4, 0.3, 0.47, −0.53, 0.2 and −0.2

A.

1.03

B.

0.07

C.

0.03

D.

1.0

Correct answer is D

0.4, −0.4, 0.3, 0.47, −0.53, 0.2, −0.2 Range is the difference between the highest and lowest value i.e Highest − Lowest − 0.53, −0.4, −0.2, 0.2, 0.3, 0.4, 0.47 0.47 is the highest − 0.53 is the lowest ∴ = 0.47 − (− 0.53) ∴0.47 + 0.53 = 1.0

713.

If α and β are the roots of the equation 3x2 + 5x - 2 = 0, find the value of 1/α + 1/β

A.

\(\frac{-5}{3}\)

B.

\(\frac{-2}{3}\)

C.

\(\frac{1}{2}\)

D.

\(\frac{5}{2}\)

Correct answer is D

1/α + 1/β = β+α/αβ
3x2 + 5x - 2 = 0
x2 + 5x/3 - 2/3 = 0
αβ = -2/3
β+α = -5/3
Thus; β+α/αβ = -2/3 -2/3 = -5/2

714.

If \(\frac{2 \sqrt{3} - \sqrt{2}}{\sqrt{3} + 2 \sqrt{2}}\) = m + n √ 6,

find the values of m and n respectively

A.

1, − 2

B.

− 2, n = 1

C.

\(\frac{-2}{5}\), 1

D.

\(\frac{2}{3}\)

Correct answer is B

\(\frac{2 \sqrt{3} - \sqrt{2}}{\sqrt{3} + 2 \sqrt{2}}\)= m + n√6

\(\frac{2 \sqrt{3} - \sqrt{2}}{\sqrt{3} + 2 \sqrt{2}}\) x \(\frac{\sqrt{3} - 2 \sqrt{2}}{\sqrt{3} - \sqrt{2}}\)


\(\frac{2 \sqrt{3} (\sqrt{3} - 2 \sqrt{2}) - \sqrt{2}(\sqrt{3} - 2 \sqrt{2})}{\sqrt{3}(\sqrt{3} - 2 \sqrt{2}) + 2 \sqrt{2}(\sqrt{3} - 2 \sqrt{2})}\)

\(\frac{2 \times 3 - 4\sqrt{6} - 6 + 2 \times 2}{3 - 2 \sqrt{6} + 2 \sqrt{6} - 4 \times 2}\)

= \(\frac{6 - 4 \sqrt{6} - \sqrt{6} + 4}{3 - 8}\)

= \(\frac{0 - 4 \sqrt{6} - 6}{5}\)

= \(\frac{10 - 5 \sqrt{6}}{5}\)

= − 2 + √6

∴ m + n\(\sqrt{6}\) = − 2 + √6

m = − 2, n = 1

715.

Simplify (3√64a3)\(^{−1}\)

A.

4a

B.

\(\frac{1}{8a}\)

C.

8a

D.

\(\frac{1}{4a}\)

Correct answer is D

(3√64a3)\(^{-1}\)

\(\frac{1}{(3√64a^3)

= \(\frac{1}{4a}\)