How good are you with figures and formulas? Find out with these Mathematics past questions and answers. This Test is useful for both job aptitude test candidates and students preparing for JAMB, WAEC, NECO or Post UTME.
\(\frac{d}{dx} [\log (4x^3 - 2x)]\) is equal to
\(\frac{12x - 2}{4x^2}\)
\(\frac{43x^2 - 2x}{7x}\)
\(\frac{4x^2 - 2}{7x + 6}\)
\(\frac{12x^2 - 2}{4x^3 - 2x}\)
Correct answer is D
\(\frac{d}{dx} [\log (4x^3 - 2x)]\) ... (1)
Let u = 4x\(^3\) - 2x.
\(\frac{\mathrm d}{\mathrm d x} (\log (4x^3 - 2x)) = (\frac{\mathrm d}{\mathrm d u})(\frac{\mathrm d u}{\mathrm d x})\)
\(\frac{\mathrm d}{\mathrm d u} (\log u)\) = \(\frac{1}{u}\)
\(\frac{\mathrm d u}{\mathrm d x} = 12x^2 - 2\)
\(\therefore \frac{d}{dx} [\log (4x^3 - 2x)] = \frac{12x^2 - 2}{u}\)
= \(\frac{12x^2 - 2}{4x^3 - 2x}\)
If \(y = 6x^3 + 2x^{-2} - x^{-3}\), find \(\frac{\mathrm d y}{\mathrm d x}\).
\(\frac{\mathrm d y}{\mathrm d x} = 15x^2 - 4x^{-2} - 3x^{-2}\)
\(\frac{\mathrm d y}{\mathrm d x} = 6x + 4x^{-1} - 3x^{-4}\)
\(\frac{\mathrm d y}{\mathrm d x} = 18x^2 - 4x^{-3} + 3x^{-4}\)
\(\frac{\mathrm d y}{\mathrm d x} = 12x^2 + 4x^{-1} - 3x^{-2}\)
Correct answer is C
\(y = 6x^3 + 2x^{-2} - x^{-3}\)
\(\frac{\mathrm d y}{\mathrm d x} = 18x^2 - 4x^{-3} + 3x^{-4}\)
If \(\begin{vmatrix} 2 & -4 \\ x & 9 \end{vmatrix} = 58\), find the value of x.
10
30
14
28
Correct answer is A
\(\begin{vmatrix} 2 & -4 \\ x & 9 \end{vmatrix} = 58\)
\(\implies (2 \times 9) - (-4 \times x) = 58\)
\(18 + 4x = 58 \implies 4x = 58 - 18 = 40\)
\(x = 10\)
If P(2, m) is the midpoint of the line joining Q(m, n) and R(n, -4), find the values of m and n.
m = 0, n = 4
m = 4, n = 0
m = 2, n = 2
m = -2, n = 4
Correct answer is A
Q(m, n) and R(n, -4)
Midpoint : P(2, m)
\(\implies (\frac{m + n}{2}, \frac{n - 4}{2}) = (2, m)\)
\(m + n = 2 \times 2 \implies m + n = 4 ... (i)\)
\(n - 4 = 2 \times m \implies n - 4 = 2m ... (ii)\)
Solving (i) and (ii) simultaneously,
m = 0 and n = 4.
y = 5x + 2
y = 5x + 3
y = 12x + 2
y = 22x + 3
Correct answer is A
The equation of a straight line is given as \(y = mx + b\)
where m = the slope of the line
b = intercept
Given points A(3, 12) and B(5, 22), the slope = \(\frac{22 - 12}{5 - 3}\)
= \(\frac{10}{2}\) = 5
Hence, the equation of the line is \(y = 5x + 2\).