\(\frac{2y - 5x}{4}\)
\(\frac{9(2x - 5x)}{x^2y^2}\)
\(\frac{5x - 2y}{2}\)
\(\frac{c^2y^2}{18y - 45x}\)
\(\frac{4}{2y - 5x}\)
Correct answer is A
\((\frac{3}{x} - \frac{15}{2y}) \div \frac{6}{xy}\)
= \((\frac{6y - 15x}{2xy}) \div \frac{6}{xy}\)
= \(\frac{6y - 15x}{2xy} \times \frac{xy}{6}\)
= \(\frac{3(2y - 5x)}{2xy} \times \frac{xy}{6}\)
= \(\frac{2y - 5x}{4}\)