Calculate the mass of copper deposited if a current of 0.45A flows through \(CuSO_{4}\) solution for 1hour 15mins.   [Cu=64.0, S= 32.0, O =16.0, 1F= 96500C]

A.

6.40g

B.

0.67g

C.

0.64g

D.

0.45g

Correct answer is B

\(Cu^{2+} + 2e^{-}  \to  Cu_{(s)}\)

\( 2 \times 96500C = 193000C  deposits 64g of Cu\)

\(M \propto It\)

\(Q = It = 0.45A \times 1hr15mins\)

= \( 0.45 \times 75 \times 60\) [converting the time to seconds]

Quantity of electricity passed = 2025C

\(193000C \to 64g Cu\)

\(1C \to \frac{64}{193000}\)

\(2025C \to \frac{64}{193000} \times 2025\)

\(= 0.6715g  \approxeq  0.67g\)