6.40g
0.67g
0.64g
0.45g
Correct answer is B
\(Cu^{2+} + 2e^{-} \to Cu_{(s)}\)
\( 2 \times 96500C = 193000C deposits 64g of Cu\)
\(M \propto It\)
\(Q = It = 0.45A \times 1hr15mins\)
= \( 0.45 \times 75 \times 60\) [converting the time to seconds]
Quantity of electricity passed = 2025C
\(193000C \to 64g Cu\)
\(1C \to \frac{64}{193000}\)
\(2025C \to \frac{64}{193000} \times 2025\)
\(= 0.6715g \approxeq 0.67g\)