X(g) + 3Y(g) ---- 2z(g) H = +ve. if the reaction above takes place at room temperature, the G will be
negative
zero
positive
indeterminate
Correct answer is A
\(\begin{array}{c|c}
\text{Enthalpy Change [ΔH]} & \text{Entropy Change [ΔS]} & \text{Gibbs free Energy[ΔG]} \\
\hline
\text{Positive} & \text{Positive} & \text{depends on T, may be + or -} \\ \hline \text{Negative} & \text{Positive} & \text{always negative} \\ \hline \text{Negative} & \text{Negative} & \text{depends on T, may be + or -} \\ \hline \text{Positive} & \text{Negative} & \text{always positive} \end{array}\)
ΔG= ΔH − TΔS.
To determine whether ΔG will be positive or negative, the value of ΔH(change in enthalpy) and ΔS (change in entropy) must be given. Likewise the temperature.