For what value of x is  \(\frac{ x^2 + 2 }{ 10x^2 - 13x - 3}\)  is undefined?

A.

\(\frac{1}{5}, \frac{3}{2}\)

B.

\(\frac{-1}{5}, \frac{3}{2}\)

C.

\(\frac{1}{5}, \frac{-3}{2}\)

D.

\(\frac{-1}{5}, \frac{-3}{2}\)

Correct answer is B

The fraction  \(\frac{ x^2 + 2 }{ 10x^2 - 13x - 3}\)  is undefined when the denominator is equal to zero

\(then  10x^2 - 13x - 3 = 0\)

by factorisation,  \(10x^2 - 13x - 3\) = 0 becomes \( 10x^2 - 15x +2x -3\) = 0

\(5x(2x - 3) + 1(2x - 3) = 0\)

\((5x + 1)(2x - 3) = 0\)

\(then, x = \frac{-1}{5}\) or \(\frac{3}{2}\)