Simplify \(3\sqrt{12} + 10\sqrt{3} - \frac{6}{\sqrt{3}}\)

A.

10\(\sqrt{3}\)

B.

18\(\sqrt{3}\)

C.

14\(\sqrt{3}\)

D.

7\(\sqrt{3}\)

Correct answer is C

\(3\sqrt{12} + 10\sqrt{3} - \frac{6}{\sqrt{3}}\)

= \(3\sqrt{4\times3} + 10\sqrt{3} - \frac{6}{\sqrt{3}}\)

= \(6\sqrt{3} + 10\sqrt{3} - \frac{6}{\sqrt{3}}\)

treating  like a fraction, then 

= \(\frac{18 + 30 - 6}{\sqrt{3}}\)

= \(\frac{42}{\sqrt{3}}\)

rationalizing 

= \(14\sqrt{3}\)