100112 + *****2 + 111002 + 1012 = 10011112

A.

11112

B.

110112

C.

101112

D.

110012

Correct answer is B

Convert the binary to base 10 and they convert back to base two

100112 + xxxxx2 + 111002 + 1012 = 10011112


(1 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 1 × 20) + xxxxx2 +(1 × 24 + 1 × 23 + 1 × 22 + 0 × 21 + 0 × 20) + (1 × 22 + 0 × 21 + 1 × 20)

= (16 + 0 + 0 + 2 + 1) + xxxxx2 + (16 + 8 + 4 + 0 + 0 ) + (4 + 0 + 1)

=(64 + 0 + 0 + 8 + 4 + 2 + 1)

19 + xxxxx2 + 33 = 79

xxxxx2 + 52 = 79

xxxxx2 = 79 − 52

xxxxx2 = 2710

\( \begin{array}{c|c}
2 & 27 \\
\hline
2 & 13 \text{ rem 1}\\
2 & 6 \text{ rem 1}\\
2 & 3 \text{ rem 0}\\
2 & 1 \text{ rem 1}\\
& 0 \text{ rem 1}\\
\end{array}\uparrow \)

2710 = 110112

Therefore xxxxx2 = 2710 = 110112