Express \(\frac{2}{x + 3} - \frac{1}{x - 2}\) as a simple fraction

A.

\(\frac{x - 7}{x^2 + x - 6}\)

B.

\(\frac{x - 1}{x^2 + x - 6}\)

C.

\(\frac{x - 2}{x^2 + x - 6}\)

D.

\(\frac{x - 27}{x^2 + x - 6}\)

Correct answer is A

\(\frac{2}{x + 3} - \frac{1}{x - 2}\) = \(\frac{2(x - 2) - (x - 3)}{(x + 3) (x - 2)}\)

= \(\frac{2x - 4 - x - 3}{x^2 - 2x + 3x - 6}\)

= \(\frac{x -7}{x^2 + x - 6}\)

= \(\frac{x - 7}{x^2 + x - 6}\)