Calculate the angle of minimum deviation of a 60º prism of a refractive index 1.5[ \(sin^{-1}\) (0.75) = 49º]

 

A.

38o

B.

19.47o

C.

16.25o

D.

49o

Correct answer is A

For a refractive index () = \(\frac{\sin\frac{1}{2} (A + D)}{\sin\frac{1}{2}A}\)

D = angle of minimum deviation

A = refractive angle of the prism

1.5 = \(\frac{\sin\frac{1}{2} (60 + D)}{\sin\frac{1}{2} \times 60}\)

1.5 = \(\frac{\sin\frac{1}{2} (60 + D)}{\sin 30}\)

Sin \(\frac{1}{2}\) (60 + D) = 1.5 * Sin 30

Sin \(\frac{1}{2}\) (60 + D) = 0.75

\(\frac{1}{2}\) (60 + D) = Sin-1 (0.75)

but Sin-1 (0.75) = 49o

\(\frac{1}{2}\) (60 + D) = 49

60 + D = 2 * 49 = 98o

D = 98o - 60o

D = 38o