Calculate the angle of minimum deviation for a ray which is refracted through an equiangular prism of refractive index 1.4

A.

600

B.

290

C.

990

D.

900

Correct answer is B

From the relation refractive index = Sin \( \left(\frac{A+Dm}{2}\right) \)

Where A = refractive angle = 600, Sin\( \left(\frac{A}{2}\right) \)

\( \implies 1.4 = \frac{\text{Sin}\left(\frac{60^0 + Dm}{2}\right)}{\text{Sin}\left(\frac{60}{2}\right)} \\

= \frac{\text{Sin}\left(\frac{60 + Dm}{2}\right)}{\text{Sin}30^0} \\

= \frac{\text{Sin}\left(\frac{60 + Dm}{2}\right)}{0.5}\\

\text{Therefore} 1.4 \times 0.5 = \text{Sin}\left(\frac{60 + Dm}{2}\right) \\

\text{Therefore} \left(\frac{60 + D_m}{2}\right)= \text{Sin}^{-1} 0.7000 \\

= 44^0 12^1 \\

60^0 + D_m = 88^0 24^1 \\
D_m = 88^0 24^1 - 60^0 \\

= 28^0 24 \\
29^0 \)