The dimension of universal gravitational constant is……….?

A.

\( M­^{–1}L^3 T^{–2} \)

B.

ML3T2

C.

ML3

D.

MLT-2

Correct answer is A

f α (MM ÷g2)

F(GMM ÷ r2) [G – gravitational constant]

GMM = Fr2

G = F02 ÷ MM = m × aπr2 ÷ MM (f = ma)

= (m × m5-2 × r2) ÷ MM

= (Kg.m52 × m2) ÷ Kg.Kg

=1 ÷ kg.m3.52

The dimension mathematically representation have a quantities of M, L AND T

M (Mass) = kg, L (Length) = M, T (Time) second

G = kg-1 m2.52(Using dimension rule)

M-1.L3.T-2

∴ The universal gravitational constant (G) =\( M­^{–1}L^3 T^{–2} \)