If y = 2x2 + 9x - 35. Find the range of values for which y < 0.

A.

7 < x < \(\frac{5}{2}\)

B.

-5 < 7 < x

C.

-7 < x < 5

D.

-7 < x < \(\frac{5}{2}\)

Correct answer is D

y = 2x2 + 9x - 35

2x2 + 9x = 35

x2 + \(\frac{9}{2}\) = \(\frac{35}{2}\)

x2 + \(\frac{9}{2}\) + \(\frac{81}{16}\) = \(\frac{35}{2}\) = \(\frac{81}{16}\)

(x + \(\frac{9}{4}\))2 = \(\frac{361}{16}\)

x = \(\frac{-9}{4}\) + \(\frac{\sqrt{361}}{16}\)

x = \(\frac{-9}{4}\) + \(\frac{19}{4}\)

= 2.5 or -7

-7 < x < \(\frac{5}{2}\)