\(\frac{1}{x}\)
\(\frac{1 - x}{x}\)
\(\frac{1 + x}{x}\)
\(\frac{1}{x - 1}\)
\(\frac{-x - 1}{1}\)
Correct answer is C
\(\frac{1 - x^2}{x - x^2}\), where x = \(\neq\) 0
\(\frac{1^2 - x^2}{x - x^2}\)
= \(\frac{(1 + x)(1 - x)}{x(1 - x)}\)
= \(\frac{1 + x}{x}\)