What is the length of an arc of a circle that substends 2\(\frac{1}{2}\) radians at the centre when the raduis of the circle = \(\frac{k}{k + 1}\) + \(\frac{k + 1}{k}\) then

A.

p< 0

B.

p\(\geq\) 0

C.

p \(\leq\) 0

D.

p < 1

E.

p > 0

Correct answer is E

\(\frac{k}{k + 1}\) + \(\frac{k + 1}{k}\)

= \(\frac{k^2 + (k + 1)^2}{k(k + 10}\)

= \(\frac{2k^2 + 2k + 1}{k(k + 1}\)

let k = \(\frac{1}{2}\)

p = \(\frac{10}{3}\)

p > 0