y = \(\frac{10x^2}{31} + \frac{52}{31\sqrt{x}}\)
y = x2 + \(\frac{1}{\sqrt{x}}\)
y = x2 + \(\frac{1}{x}\)
y = \(\frac{x^2}{31} + \frac{1}{31\sqrt{x}}\)
Correct answer is A
y = kx2 + \(\frac{c}{\sqrt{x}}\)
y = 2when x = 1
2 = k + \(\frac{c}{1}\)
k + c = 2
y = 6 when x = 4
6 = 16k + \(\frac{c}{2}\)
12 = 32k + c
k + c = 2
32k + c = 12
= 31k + 10
k = \(\frac{10}{31}\)
c = 2 - \(\frac{10}{31}\)
= \(\frac{62 - 10}{31}\)
= \(\frac{52}{31}\)
y = \(\frac{10x^2}{31} + \frac{52}{31\sqrt{x}}\)
In the diagram, |QR| = 5cm, PQR = 60<sup>o</sup> and PSR = 45<sup>o</sup>. F...
In the diagram, find PQ if the area of triangle PQR is 35cm\(^2\)...
Solve for x: 3(x – 1) ≤ 2 (x – 3) ...
Factorise (4a + 3) \(^2\) - (3a - 2)\(^2\)...
Find the lower quartile of the distribution illustrated by the cumulative frequency curve ...
The line \(3y + 6x\) = 48 passes through the points A(-2, k) and B(4, 8). Find the value of k....