\(\frac{-3}{9}\)
\(\frac{-3}{2}\)
\(\frac{6}{11}\)
\(\frac{43}{78}\)
Correct answer is B
\(\frac{\log_{3} 27 - \log_{\frac{1}{4}} 64}{\log_{3} (\frac{1}{81})}\)
\(\log_{3} 27 = \log_{3} 3^{3} = 3\log_{3} 3 = 3\)
\(\log_{\frac{1}{4}} 64 = \log_{\frac{1}{4}} (\frac{1}{4})^{-3} = -3\)
\(\log_{3} (\frac{1}{81}) = \log_{3} 3^{-4} = -4\)
\(\therefore \frac{\log_{3} 27 - \log_{\frac{1}{4}} 64}{\log_{3} (\frac{1}{81})} = \frac{3 - (-3)}{-4}\)
= \(\frac{6}{-4} = \frac{-3}{2}\)
Simplify 2.04 × 3.7 (Leave your answer in 2 decimal place) ...
In ∆PQR. ∠PQR is a right angle. |QR| = 2cm and ∠PRQ = 60o. Find |PR|...
Solve the logarithmic equation: \(log_2 (6 - x) = 3 - log_2 x\)...
If x - 4 is a factor of x2 - x - k, then k is...
Evaluate 1 − (\(\frac{1}{5}\) x 1\(\frac{2}{3}\)) + (5 + 1\(\frac{2}{3}\))...