y = \(\frac{1}{(Z - x^2)^3}\)
y = \(\frac{1}{(Z + x^2)^{\frac{1}{3}}}\)
y = \(\frac{1}{(Z - x^2)^{\frac{1}{3}}}\)
y = \(\frac{1}{\sqrt[3]{Z} - \sqrt[3]{x^2}}\)
Correct answer is C
Z = x\(^2\) + \(\frac{1}{y^3}\)
Z - x\(^2\) = \(\frac{1}{y^3}\)
y\(^3\) = \(\frac{1}{Z - x^2}\)
y = \(\sqrt[3]{\frac{1}{Z - x^2}}\)
∴ y = \(\frac{1}{\sqrt[3]{Z - x^2}}\)
y = \(\frac{1}{(Z - x^2)^{\frac{1}{3}}}\)