Make y the subject of the formula Z = x\(^2\) + \(\frac{1}{y^3}\)

A.

y = \(\frac{1}{(Z - x^2)^3}\)

B.

y = \(\frac{1}{(Z + x^2)^{\frac{1}{3}}}\)

C.

y = \(\frac{1}{(Z - x^2)^{\frac{1}{3}}}\)

D.

y = \(\frac{1}{\sqrt[3]{Z} - \sqrt[3]{x^2}}\)

Correct answer is C

Z = x\(^2\) + \(\frac{1}{y^3}\)

Z - x\(^2\) = \(\frac{1}{y^3}\)

y\(^3\) = \(\frac{1}{Z - x^2}\)

y = \(\sqrt[3]{\frac{1}{Z - x^2}}\)

∴ y = \(\frac{1}{\sqrt[3]{Z - x^2}}\)

y = \(\frac{1}{(Z - x^2)^{\frac{1}{3}}}\)