If P = \(\frac{2}{3}\) (\(\frac{1 - r^2}{n^2}\)), find n when r = \(\frac{1}{3}\) and p = 1

A.

\(\frac{3}{2}\)

B.

\(\frac{1}{3}\)

C.

3

D.

\(\frac{2}{3}\)

Correct answer is D

If P = \(\frac{2}{3}\) (\(\frac{1 - r^2}{n^2}\)), find n when r = \(\frac{1}{3}\) and p = 1

p = \(\frac{2(1 - r^2)}{3n^2}\) when r = \(\frac{1}{3}\) and p = 1

1 = \(\frac{2}{3}\) \(\frac{(1 - (\frac{1}{3})^2)}{n^2}\)

n2 = \(\frac{2(3 - 1)}{3 \times 3}\)

n2 = \(\frac{2 \times 2}{3 \times 3}\)

= \(\frac{4}{9}\)

n = \(\frac{4}{9}\)

= \(\frac{2}{3}\)